skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hasik, Adam_Z"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundPathogens face strong selection from host immune responses, yet many host populations support pervasive pathogen populations. We investigated this puzzle in a model system ofBartonellaand rodents from Israel’s northwestern Negev Desert. We chose to study this system because, in this region, 75–100% of rodents are infected withBartonellaat any given time, despite an efficient immunological response. In this region,Bartonellaspecies circulate in three rodent species, and we tested the hypothesis that at least one of these hosts exhibits a waning immune response toBartonella, which allows reinfections. MethodsWe inoculated captive animals of all three rodent species with the sameBartonellastrain, and we quantified the bacterial dynamics andBartonella-specific immunoglobulin G antibody kinetics over a period of 139 days after the primary inoculation, and then for 60 days following reinoculation with the same strain. ResultsContrary to our hypothesis, we found a strong, long-lasting immunoglobulin G antibody response, with protective immunological memory in all three rodent species. That response prevented reinfection upon exposure of the rodents to the sameBartonellastrain. ConclusionsThis study constitutes an initial step toward understanding how the interplay between traits ofBartonellaand their hosts influences the epidemiological dynamics of these pathogens in nature. Graphical Abstract 
    more » « less
  2. Abstract Host populations often vary in the magnitude of coinfection they experience across environmental gradients. Furthermore, coinfection often occurs sequentially, with a second parasite infecting the host after the first has established a primary infection. Because the local environment and interactions between coinfecting parasites can both drive patterns of coinfection, it is important to disentangle the relative contributions of environmental factors and within‐host interactions to patterns of coinfection.Here, we develop a conceptual framework and present an empirical case study to disentangle these facets of coinfection. Across multiple lakes, we surveyed populations of five damselfly (host) species and quantified primary parasitism by aquatic, ectoparasitic water mites and secondary parasitism by terrestrial, endoparasitic gregarines. We first asked if coinfection is predicted by abiotic and biotic factors within the local environment, finding that the probability of coinfection decreased for all host species as pH increased. We then asked if primary infection by aquatic water mites mediated the relationship between pH and secondary infection by terrestrial gregarines.Contrary to our expectations, we found no evidence for a water mite‐mediated relationship between pH and gregarines. Instead, the intensity of gregarine infection correlated solely with the local environment, with the magnitude and direction of these relationships varying among environmental predictors.Our findings emphasize the role of the local environment in shaping infection dynamics that set the stage for coinfection. Although we did not detect within‐host interactions, the approach herein can be applied to other systems to elucidate the nature of interactions between hosts and coinfecting parasites within complex ecological communities. 
    more » « less